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Abstract: Advances in sequencing and assembly technology have led to the creation of genome
assemblies for a wide variety of non-model organisms. The rapid production and proliferation of
updated, novel assembly versions can create vexing problems for researchers when multiple-genome
assembly versions are available at once, requiring researchers to work with more than one reference
genome. Multiple-genome assemblies are especially problematic for researchers studying the genetic
makeup of individual cells, as single-cell RNA sequencing (scRNAseq) requires sequenced reads
to be mapped and aligned to a single reference genome. Using the Astyanax mexicanus, this study
highlights how the interpretation of a single-cell dataset from the same sample changes when aligned
to its two different available genome assemblies. We found that the number of cells and expressed
genes detected were drastically different when aligning to the different assemblies. When the genome
assemblies were used in isolation with their respective annotations, cell-type identification was
confounded, as some classic cell-type markers were assembly-specific, whilst other genes showed
differential patterns of expression between the two assemblies. To overcome the problems posed by
multiple-genome assemblies, we propose that researchers align to each available assembly and then
integrate the resultant datasets to produce a final dataset in which all genome alignments can be used
simultaneously. We found that this approach increased the accuracy of cell-type identification and
maximised the amount of data that could be extracted from our single-cell sample by capturing all
possible cells and transcripts. As scRNAseq becomes more widely available, it is imperative that the
single-cell community is aware of how genome assembly alignment can alter single-cell data and
their interpretation, especially when reviewing studies on non-model organisms.

Keywords: genome assembly; Astyanax mexicanus; integration; seurat; read alignment; non-model
organisms; scRNAseq

1. Introduction

The use of single-cell RNA sequencing (scRNAseq) technology has greatly increased
since it was first developed in 2009 [1]. scRNAseq provides transcriptome information
about individual cells, enabling researchers to answer a wide variety of biological questions
about topics such as cell–cell heterogeneity, tissue composition and cell-specific gene
expression responses to disease and/or injury [2]. Commercialised scRNAseq kits have
helped to lower the costs of single-cell experiments, making these experiments more readily
accessible to researchers. Indeed, scRNAseq is becoming a routine investigatory approach
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and has been applied to a range of model and non-model organisms, from the frequently
used mouse (Mus musculus) [3] to the less commonly used earthworm (Eisenia andrei) [4].

The application of scRNAseq to an organism of choice is dependent on the quality
and availability of the organism’s reference genome and associated gene annotations. Or-
ganisms that are best-suited to scRNAseq have a high-quality reference genome that is
well-annotated in the untranslated regions (UTR), as many scRNAseq approaches, such as
CEL-seq, MARS-seq, Drop-seq and Chromium, capture mRNA molecules for sequencing
via their 3′ polyadenylated tails [5]. Creating high-quality reference genomes was tradi-
tionally an expensive, laborious and time-costly undertaking that was reserved exclusively
for a few well-funded, large and international consortia [6–9]. However, developments in
high-throughput DNA sequencing, de novo genome assembly technologies and automated
genome annotation have significantly decreased the time and cost required for genome
assembly construction [10,11]. This has made it feasible for individual labs to sequence
and construct a genome assembly, enabling scRNAseq to be applied to any non-model
organism of choice [4]. Although the accelerated production and publication of genome
assemblies for non-model organisms is very beneficial for a wide range of biomedical
research, it can result in multiple-genome assemblies for a given non-model organism
to be available concurrently. This is especially problematic for single-cell researchers, as
scRNAseq analysis requires sequenced reads to be mapped and aligned to a single reference
genome. To date, how interpretation of a single-cell dataset might change depending on
the reference to which it is aligned has not been explored.

A. mexicanus is a teleost with closely related surface-dwelling and cave-dwelling
populations [12]. These separate fish populations arose 10,000-1 million years ago when
changes in river levels isolated a series of caves in northeastern Mexico from the surround-
ing rivers [13–16]. From this point, the surface- and cave-dwelling populations began to
diverge in their evolution as they adapted to their local environment. For example, cave-
dwelling populations lost their eyes and pigment [17–20] and instead gained an altered
metabolism that enables them to cope with long periods of fasting due to the scarcity
of food available in the caves [21]. Currently, there are two A. mexicanus genome assem-
blies available on Ensembl: v1.0.2, a scaffold-level short-read assembly of an individual
from the Pachón cave-dwelling population (listed as Pachón cavefish) [22], and v2.0, a
chromosome-level long-read assembly of an F1 hybrid of the Rio Sabinas and Rio Valles
surface populations (listed as “Mexican tetra”) [23]. In theory, the v2.0 assembly should
produce better results as it is more complete, contiguous, and continuous. To compare
the results of using the two different assemblies for alignment, we therefore aligned an
A. mexicanus single-cell dataset to the v1.0.2 and v2.0 assemblies. We found that the two
generated count matrices were fundamentally different, and some results were inconsistent
across the two assemblies. To combat this problem, we applied an integration methodology
which improved our cell-type annotation and marker gene identification. We propose that
our integrated approach will be a useful tool for all researchers using non-model organisms
and offers a unifying solution to the problems created by discordant genome assemblies.

2. Materials and Methods
2.1. Animal Husbandry

All experimental procedures were performed in accordance with the UK Animals
(Scientific Procedures) Act 1986 and institutional guidelines, and conform to the guidelines
from Directive 2010/63/EU of the European Parliament on the protection of animals used
for scientific purposes. Adult male and female A. mexicanus surface fish (1-year) were
maintained in the laboratory on a 14/10 h photo-period at 22–25 ◦C.

2.2. Astyanax Mexicanus Heart Dissection and Digestion

Lab-raised A. mexicanus surface morphs (n = 3) were culled using an overdose of MS222
at 5 g/mL (Sigma, Dorset, UK, Cat. no. A5040). Hearts were isolated and tissue digestion
was based on a protocol previously described by Sander et al. (2013) [24]. Ventricles were
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collected on ice, minced into small pieces, and digested in an Eppendorf tube with 500 µL
of digestion buffer. Digestion Buffer was made fresh every digestion and consisted of:
1X PBS, 30 mM Taurine (Sigma, Dorset, UK, cat. no. T8691), 5.5 mM Glucose (Sigma,
Dorset, UK, cat. no. G7528), 10 mM 2,3-Butanedione Monoxime (Sigma, Dorset, UK, cat.
no. B0753), 10 mM HEPES (Sigma, Dorset, UK, cat. no. H3393), 12.5 µM CaCl2 (Sigma,
Dorset, UK, cat. no. C4901), 5 mg/mL Collagenase II (Gibco by Life Technologies, Bleiswijk,
Netherlands, cat. no. 17101-015), 5 mg/mL Collagenase IV (Gibco by Life Technologies,
Bleiswijk Netherlands, cat. no. 17104-019) and 30 µg/mL DNAse I (Sigma, Dorset, UK,
cat. no. 10104159001). The CaCl2 concentration was kept at 12.5 µM to ensure adequate
cell survival of all cell types present in the heart. Samples were incubated at 32 ◦C on an
Eppendorf thermomixer at 800 rpm. Supernatants were collected every 15 min, neutralised
using 1% sheep serum (Sigma, Dorset, UK, cat. no. S3772), and samples were replenished
with fresh digestion buffer until all tissue had been digested (approx. 1–2 h). Dissociated
cells were filtered through 100 µm filters, spun down (300 g for 5 min at 4 ◦C), counted,
and spun down again before resuspension. Cells were suspended at 2000 cells/µL in
DMEM (Life Technologies, Bleiswijk Netherlands, cat. no. 22320-022) plus 10% fetal bovine
serum (ThermoFisher, Bleiswijk Netherlands, cat.no. A3840001) before loading onto 10x
Chromium Chip B (10x Genomics, Leiden, Netherlands, cat. no. 1000073).

2.3. 3′ UTR Extension

The v1.0.2 and v2.0 A. mexicanus genome assemblies are poorly annotated in the 3′

UTR (Supplementary Figure S1). To enable the maximum capture of transcripts during data
exploration pending the availability of a better genome annotation, a terminal exon exten-
sion algorithm was applied to extend the 3′ UTR annotation. The extension algorithm used
a full-length poly(A) RNA-seq sample as a reference and applied the following heuristic:

1. Identify transcripts without 3′ UTR annotation in the Ensembl GTF file
2. Compare fragment coverage over 100 bp flanking the terminal exon
3. If median 3′ coverage > median 5′ coverage, extend last exon 100 bp in the 3′ direction

and repeat steps 2 & 3 until no further extension occurs.

The extension algorithm was used to create two custom extended GTF files that were
used for read counting with the corresponding v1.0.2 and v2.0 genome assemblies (available
in Supplementary Materials). In all, 5077/25,489 gene-level annotations on 2530 contigs
were extended for v1.0.2, and 8721/27,420 on 25 chromosomes and 1363 contigs were
extended for v2.0.

2.4. 10x Single-Cell RNA-Sequencing and Analysis

Single-Cell RNAseq libraries were generated using the 10x Chromium Next GEM
Single-Cell 3′ v3.1 kit (10x Genomics, Leiden, Netherlands, cat. no. 1000092) and sequenced
using the Illumina NextSeq® 500/550 High Output Kit v2 (Illumina, San Diego, United
States, cat.no. FC-404-2005). After sequencing, FASTQ files were generated using Cell
Ranger mkfastq (v3.0.2). The raw reads were mapped to Astyanax mexicanus v1.0.2 and
v2.0 genome assemblies using Cell Ranger count with the corresponding 3′ UTR-extended
annotations, and two filtered feature matrices were produced. Downstream analysis was
performed using the Seurat R package (v4.0.6) [25]. Initial quality control thresholds
removed all cells with <50 captured genes and all genes present in <2 cells. Cell filtering
thresholds were set based on the average nFeatures and nCounts present in each genome
assembly dataset.

SCTransform [26] was used to normalise, find variable features and scale v1.0.2 and
v2.0 datasets individually. The dimensions of the datasets were reduced using Principal
Component analysis (PCA) and uniform manifold approximation projection (UMAP). Cells
were assigned to clusters using the FindNeighbours and FindClusters functions and the
appropriate resolution was chosen using the Clustree package (version 0.4.3) [27]. Marker
genes for each cluster were found using. Cell-type annotations were based on marker genes
and canonical markers present in v1.0.2 and v2.0 annotations. The v1.0.2 and v2.0 datasets
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were integrated using 3000 integration features in the Seurat SCTIntegration pipeline.
Differential expression analysis was performed using the LR test in the FindMarkers
function and visualised using EnhancedVolcano (v1.8.0). Gene Set Enrichment Analysis
was carried out by converting A. mexicanus genes to their correspondent mouse homologs
via BiomaRt (v2.46.3). Any genes which did not have a mouse homolog or mapped to
multiple mouse genes were removed, and the final mouse gene lists was tested using
the fgsea package (v1.16.0). Conserved genes in the integrated dataset were found using
FindConservedMarkers.

3. Results
3.1. Datasets Generated from the Same Sample Change in Their Fundamental Structure Depending
on Genome Assembly and Annotation

To investigate the influence of genome assembly on a single-cell dataset, cardiac
ventricular cells from three A. mexicanus surface fish were pooled and sequenced. The se-
quenced reads were aligned to both available genome assemblies with their corresponding
gene annotations using Cell Ranger to generate two filtered feature matrices (gene x cell):
a v1.0.2 and a v2.0 dataset. To investigate differences in the two datasets, we performed
an initial comparison of the Cell Ranger outputs (Table 1). We found that the v1.0.2 and
v2.0 datasets had different matrix dimensions, representing differing numbers of cells and
expressed genes detected by Cell Ranger. The v2.0 assembly had a >10% higher percentage
of sequenced reads that mapped to the transcriptome, resulting in a higher average number
of reads and genes detected per cell. The difference in genes present in the matrix had an
unexpected impact on cell capture rates; the v2.0 assembly captured an additional 148 cells
compared to the v1.0.2. Further comparison between the captured cells showed that both
datasets had assembly-specific cells (16 in v1.0.2 and 225 in v2.0). These fundamental
differences in cell and feature capture rates required quality control thresholds to be set
according to genome-assembly (Figure 1), resulting in a difference of 209 cells available
for analysis post-filtering. Therefore, we found that genome assembly choice can alter the
fundamental structure of scRNAseq datasets, impacting the number of genes and cells
available for downstream analysis.

Table 1. Table of differences in the 2 datasets generated using v1.0.2 and v2.0 genome assemblies.

Assembly Readouts v1.0.2 Assembly v2.0 Assembly

Matrix Dimensions 25,489 genes, 8870 cells 27,420 genes, 9018 cells
Reads Mapped to Genome 72.6% 74.1%

Reads Mapped to Transcriptome 41.7% 52.4%
Median Reads/Cell 30,901 30,394
Median Genes/Cell 794 1201

Assembly-specific cells 16 225
Assembly-specific genes 4311 5638

nCount vs. nFeature Correlation 0.84 0.88
Quality Control Thresholds nFeatures: 200–2500 nFeatures: 200–3500

nCounts: <20,000 nCounts <28,000
% Cells Passed Filtering 98.2% 98.9%

Cell Numbers Post-Filtering 8717 cells 8926 cells
% Genes Passed Filtering 64.3% 63.9%

Gene Numbers Post-Filtering 16,408 genes 17,528 genes
PCA Dimensions 30 30

Clustering Resolution 1.25 1.25
Number of Clusters Found 26 27
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Figure 1. Genome assembly can alter the nFeatures and nCounts of a scRNaseq dataset, impacting
the number of cells and genes available for downstream analysis. Scatter plots of the number of
counts (reads) vs. number of features (genes) in each captured cell when aligned to: (a) the v1.0.2
genome assembly and; (b) the v2.0 assembly. The lines on each scatter plot represent the quality
control thresholds that were set for each genome assembly, highlighting the increase in the number of
features and reads captured in the v2.0 dataset vs. v1.0.2 dataset.

3.2. Dimensional Reduction and Data Visualization Is Robust to Differences in Genome Assembly

To determine whether genome assembly alignment impacted how cells clustered
together, the two datasets were separately normalised and scaled using the nonlinear nor-
malisation method SCTransform (Seurat, v3.1.5). The dimensionality of both datasets was re-
duced using Principal Component Analysis (PCA) and a Uniform Manifold Approximation
Projection (UMAP), and cells were clustered together using a graph-based clustering ap-
proach. Cells were first embedded in a K-Nearest Neighbour (KNN) graph and then
iteratively grouped together with the number of modules optimised using the Louvain
algorithm. We found that the resultant datasets are very similar in their structure and
number of clusters identified (Figure 2), and thus, genome assembly did not materially
impact cell clustering and dimensional reduction.

3.3. Incomplete Reference Genomes, When Used in Isolation, Create Problems in Cell-Type
Identification and Differential Gene Expression Analysis and Have the Potential to Miss Data

We next sought to identify the cells present in both datasets. We used the receiver
operating characteristic (ROC) test to produce a list of gene markers for each cluster in
each dataset. Based on these gene markers, we were able to identify the expected different
cell types present within the heart, including myocardial, endocardial and epicardial
cells, fibroblasts and blood circulating cells (see Supplementary Figure S2 for top cell
marker genes used during cell annotation). However, the discordant annotations of the
v1.0.2 and the v2.0 genome assemblies presented problems during cell-type identification.
We found that the results of differential gene expression analysis were very different
between the two datasets, producing two diverging top marker lists for each cardiac
cell type, and very few genes were identified as top cell-type markers in both datasets
(Table 2). Cell-type identification was further confounded as many canonical cell-type
markers, such as α-smooth muscle actin (acta2: a marker of pericytes, smooth muscle and
myofibroblasts [28–30]), are only annotated in one genome assembly.
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Figure 2. Genome assembly does not impact dimension reduction and cell clustering. UMAPs
generated from the v1.0.2 and v2.0 datasets are very similar. The v1.0.2 B cell cluster was manually
annotated. HSCs—Hematopoietic Stem Cells.

Table 2. Table of the top 10 marker genes identified using FindMarkers for the major cell types
present in the heart. Gene symbols have been provided where possible. For genes where gene
symbol annotation is not available or multiple Ensembl IDs have the same gene symbol, Ensembl IDs
have been provided. Genes identified in both genome assemblies are highlighted in red. * denotes
genes that are assembly-specific.

Cell Type v1.0.2 Assembly v2.0 Assembly

Cardiomyocytes

ENSAMXG00005008576 * myh7l *
actc1a ENSAMXG00000004797 *
tnnc1a nme2b.1 *

cox6a2 * TNNC1
aldoaa aldoab

zgc:193541 idh2
ENSAMXG00005013223 * cox7b

IDH2 slc25a5
atp5mc3a cox7c
atp5if1a * tnnt2b
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Table 2. Cont.

Cell Type v1.0.2 Assembly v2.0 Assembly

Endothelium

ENSAMXG00005007750 * lyve1a
ENSAMXG00005016906 * ENSAMXG00000041928 *
ENSAMXG00005003412 * krt18a.1
ENSAMXG00005021204 * rgs5b

plpp2a ENSAMXG00000036379 *
ENSAMXG00005022026 * il13ra2

krt5 sat1a.2
Ucmaa * serpinh1b

ENSAMXG00005012084 * her6
ENSAMXG00005004741 * ENSAMXG00000035697 *

Fibroblasts

thbs1a ccl25b
tcf21 rbp4
lxn apoeb

kcne4 pmp22a
mustn1a tagln

ENSAMXG00005006660 * TCF21
pltp dcn

clec19a col1a2
BAMBI * anxa1a (ENSAMXG00000035597)

hmx4 sostdc1a

Neutrophils

ENSAMXG00005022612 * ENSAMXG00000006427 *
c6ast1 mmp9(ENSAMXG00000007722)

ENSAMXG00005012967 * ENSAMXG00000035474 *
ENSAMXG00005007030 * LECT2
ENSAMXG00005022013 * c6ast1

adam8a ENSAMXG00000037167 *
ltb4r cebp1

ENSAMXG00005015365 * ENSAMXG00000001798 *
mmp9 Scinlb

ENSAMXG00005024801 * ENSAMXG00000034260 *

T cells

pfn1 ENSAMXG00000036068 *
laptm5 pfn1
cxcr4b laptm5

ENSAMXG00005014236 * ctsl.1 (ENSAMXG00000029871)
coro1a cxcr4b

ENSAMXG00005012967 * rac2 *
rgs13 dusp2

PTPRC rgs13
runx3 cotl1

ENSAMXG00005022013 * ENSAMXG00000001798 *

B cells

ENSAMXG00005001652 * ENSAMXG00000033936 *
ENSAMXG00005007434 * zgc:194275

cd37 ENSAMXG00000029163 *
ENSAMXG00005014280 * ENSAMXG00000038512 *

si:dkey-24p1.1 ENSAMXG00000006777 *
ENSAMXG00005006484 * cd37
ENSAMXG00005014291 * ENSAMXG00000036191 *
ENSAMXG00005012813 * ENSAMXG00000034153 *
ENSAMXG00005000610 * ENSAMXG00000043949 *
ENSAMXG00005002435 * ENSAMXG00000043088 *



Cells 2022, 11, 608 8 of 16

Table 2. Cont.

Cell Type v1.0.2 Assembly v2.0 Assembly

Erythrocytes

hbaa2 ENSAMXG00000029151 *
ENSAMXG00005017042 * hbaa2 (ENSAMXG00000029181)

wu:fj16a03 ENSAMXG00000037273 *
cahz hbba2

nt5c2l1 HBE1 (ENSAMXG00000037475) *
ENSAMXG00005020328 * si:ch211-250g4.3 *
ENSAMXG00005017060 * si:ch211-103n10.5

mt2.2 Cahz
zgc:163057 * slc4a1a

ENSAMXG00005017061 * wu:fj16a03

Epicardium

ENSAMXG00005022849 * ENSAMXG00000036050 *
tcf21 TCF21

ENSAMXG00005007716 * Cfd
ENSAMXG00005012482 * c3a.1 *

zgc:158846 ENSAMXG00000036137 *
ENSAMXG00005022791 * igfbp5a
ENSAMXG00005009039 * stmn1a
ENSAMXG00005008245 * wt1b
ENSAMXG00005022313 * glis2a

wt1b slc29a1a

Smooth Muscle

si:dkey-57k2.6 CASP6
ENSAMXG00005003735 * Tagln

thbs1b angptl7
ENSAMXG00005011018 * ENSAMXG00000031755 *

TPM1 acta2 *
anxa1a si:dkey-57k2.6
ITIH3 rbp4

ENSAMXG00005005681 * sox9b
ENSAMXG00005018089 * anxa1a (ENSAMXG00000035597)

thbs4a thbs1b

Dendritic Cells/Macrophages

ENSAMXG00005011614 * ENSAMXG00000036068 *
ENSAMXG00005002001 * ccl35.1 *
ENSAMXG00005021693 * ENSAMXG00000037572 *

ccl34a.3 * cd74a
cxcr4b ENSAMXG00000004394 *

ENSAMXG00005014236 * cxcl8a
cd74a cxcr4b

ENSAMXG00005001734 * ENSAMXG00000042210 *
ENSAMXG00005009773 * si:dkey-5n18.1

c1qb il1b (ENSAMXG00000035729) *

In addition to the discordant annotation between assemblies resulting in assembly-
specific genes, we found that even when genes were present in both genome assemblies,
they could show different patterns of expression. We found that arhgap27, a gene we
have previously shown to be linked to cardiac regeneration [31], has different patterns
of expression in the two datasets. The v1.0.2 dataset shows arhgap27 to be expressed in
very few leukocyte cells. On the other hand, the v2.0 dataset shows arhgap27 to have
higher expression levels and suggests that it is also expressed in endothelial cells and
cardiomyocytes (Figure 3). Therefore, genome assembly alignment can produce datasets
that are inconsistent in terms of the genes present in the matrix and the expression pattern
of shared genes.
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Figure 3. arhgap27 is discordantly annotated in genome assembly v1.0.2 and v2.0. FeaturePlot
shows the distribution of arhgap27+ cells on the v1.0.2 and v2.0 datasets, as highlighted in red.

3.4. Genome Assembly Alignment Can Distort Data Interpretation from Specific Cell Types Due to
the Problems Created by Underlying Differences in Genome Assemblies

To investigate whether the observed discrepancies between the A. mexicanus genome
assemblies would impact functional data interpretation, we sought to determine whether
any cell types showed assembly-specific differences. Despite similarities in the median
number of reads captured per cell, we found that in the v2.0 alignment, there is a higher
median number of features detected (Table 1). We therefore sought to determine whether
this caused any cell-specific differences in feature-detection rates between the two datasets.
We found that although both v1.0.2 and v2.0 datasets showed a similar distribution of
features and counts across all clusters (Figure 4a,b), when we compared the number
of unique genes detected in each cell type between genome assemblies, a number of
v2.0 endothelial cells had a greater number of genes/cell than their v1.0.2 counterparts
(Figure 4c,d). To investigate how this increase in median genes/cell might impact the
interpretation of endothelial cells we performed differential gene expression analysis
between v1.0.2 and v2.0 endothelial cells. We found that when we compared v1.0.2 and
v2.0 endothelial cells by logistic regression testing, 2512 genes were upregulated in an
assembly-specific manner (Figure 4e). Gene Set Enrichment Analysis (GSEA) of these
differentially expressed endothelial genes showed that genes downregulated in response to
UV radiation were significantly enriched in the v2.0 dataset (Figure 4f) but not in the v1.0.2
dataset, thus showing that genome alignment can distort the functional interpretation of
scRNAseq results, as different results can be generated from the same sample.
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Figure 4. Genome alignment choice produces assembly-specific results due to discordant genome
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distribution of the number of genes detected/cell in each major cardiac cell type in (c) the v1.0.2
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endothelial cells and is annotated in the Hallmark pathway of genes downregulated in response
to UV radiation. (f) GSEA analysis showing the top hallmark terms per dataset, with the pathway
that reached the 0.25 false discovery rate (FDR) threshold highlighted by the black arrow, showing
that genes annotated in the hallmark pathway as downregulated in response to UV radiation are
significantly enriched in v2.0 endothelial cells.

3.5. Integration of the Two Datasets Improves Cell-Type Annotation and Maximises the
Information That Can Be Obtained from a Single-Cell Dataset

To overcome the problems posed by the discordant genome assemblies, we integrated
both datasets together using the SCTIntegration pipeline. This produced an integrated
dataset in which cells that originated from either the v1.0.2 or the v2.0 were present and
treated as unique. We found that SCTIntegration produced a UMAP with all of the expected
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cell types (Figure 5a) and that cells clustered together regardless of genome alignment
(Figure 5b). The integrated dataset included all 241 genome-specific cells (Figure 5c). This
increased the size of a wide range of cell-type clusters such as erythrocytes, endothelial
cells, cardiomyocytes, leukocytes, smooth muscle and fibroblasts, ensuring the maximal
amount of data were captured in the final integrated dataset.

During cluster annotation, the integrated dataset enabled accurate cell-type iden-
tification, as canonical markers that are only annotated in one assembly, such as acta2,
could be used simultaneously with the integrated dataset cluster marker genes to annotate
each cluster (Figure 5d). We found that the integrated dataset resulted in the inclusion
of 4311 assembly-specific genes for v1.0.2, and 5638 for v2.0, that can be utilised during
cell annotation. Additionally, we found that 525 cells from the v1.0.2 dataset and 765 cells
from the v2.0 dataset were annotated differently in the integrated dataset. Specifically,
we found that the integrated dataset allowed more accurate annotation of doublets (see
Supplementary Figure S3 for transcriptional profile of doublets), as many of the cells that
changed annotation were found in doublet clusters in the integrated dataset (25.5% for
v1.0.2 cells and 68.5% for v2.0 cells) (Figure 5e).
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Figure 5. Integrating the v1.0.2 and v2.0 datasets improves cell-type identification and maximises
the number of cells included in the final dataset. (a) Annotated UMAP of the integrated dataset
showing all of the expected cell types of the heart. CM- Cardiomyocytes (b) Cells coloured according
to genome assembly on the UMAP shows that SCTIntegration produces a UMAP in which cells from
both assemblies cluster together. (c) 241 cells present in the integrated dataset are genome-assembly-
specific. These cells fall within a range of cell-type clusters such as erthyrocytes, endothelial cells,
cardiomyocytes and fibroblasts, and would be excluded if either the v1.0.2 or the v2.0 assembly was
used in isolation. (d) FeaturePlot split by genome assembly was used to plot 2 separate UMAPs
in which each UMAP contains cells from either the v2.0 dataset or the v1.0.2 dataset, revealing the
cluster expression of assembly-specific marker genes such as acta2 and tnnc1a in the integrated dataset.
(e) 525 cells from the v1.0.2 dataset and 765 cells from the v2.0 dataset were annotated differently
in the integrated dataset. Many of these cells were found to cluster in doublet clusters and were
re-annotated as doublets, as indicated by the black arrows.
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We finally used the integrated dataset to calculate a list of conserved gene symbols
present in both genome alignments that will act as a robust list of cell-type markers of pre-
viously uncharacterised A. mexicanus cell types (Supplementary Table S1). The integrated
dataset provided a solution in which all possible genes and transcripts could be probed
simultaneously for optimal cell-type annotation.

4. Discussion

In this study, we use single-cell RNA sequencing data and two published reference
assemblies from A. mexicanus to show, for the first time, that the same set of scRNAseq reads
can produce different results when aligned to different genome assemblies, generating
differences in matrix dimensions, gene-expression patterns and cell-type identification.
Critically, the finding that only v2.0 endothelial cells show significant enrichment for
genes responsive to UV radiation confirms our hypothesis that genome assembly choice
can impact data interpretation. To overcome the problems posed by multiple-genome
assemblies that are discordantly annotated, we propose the alignment of scRNAseq samples
to all available assemblies, followed by integration, to create a finalised dataset for use in
downstream analysis.

Our proposed methodology will be a useful tool for researchers using non-model
organisms with more than one available genome assembly. Within the A. mexicanus field,
there is no consensus as to which genome assembly should be used for sequencing ex-
periments. Recent publications have used v1.0.2 [31,32], v2.0 [33], an archived version of
the genome (astmex1, Ensembl 87 gene model) [34], and even a new Pachón build only
available on NCBI [35]. Such inconsistent use of the A. mexicanus genome assemblies will
hinder research progress by introducing artefacts. Our finding that the pattern of arhgap27
expression completely changes with genome alignment emphasises that an integrated
use of all genome assemblies is essential when characterizing novel cell types and gene
expression patterns. Furthermore, our finding that v2.0 endothelial cells were significantly
enriched for genes annotated in the UV response hallmark pathway suggests that if as-
semblies continue to be used in isolation, this could lead to a problem wherein results
found using v1.0.2 are not transferable to v2.0 (and vice versa). Therefore, we propose
that both v1.0.2 and v2.0 assemblies be used for all A. mexicanus genomic studies until a
better-curated, accurate and well-annotated reference genome is available.

This work is relevant not only to A. mexicanus researchers but also to the wider
scRNAseq community, in particular for groups that work with non-model organisms
with genomes that continue to be produced at a rapid pace using a variety of different
technologies. It is likely that the observed genome discordancies that arise in the v1.0.2
and v2.0 A. mexicanus assemblies are a result of the different sequencing technologies used
during genome construction and the post-sequencing assembly and annotation algorithms.
The Pachón cavefish assembly (v1.0.2) was assembled from DNA from the heart, liver,
spleen and gill of a single 7-year-old adult female using short reads and mate-paired
libraries, with a de Bruijn graph assembler [36], in 2014. The surface fish assembly is a more
recent assembly from a single adult female surface fish that was constructed using single-
molecule-long reads, optical mapping, and a genetic linkage map. Long read constructions
are better able to resolve heterogeneous, highly repetitive regions of the genome, which
may explain why v2.0 endothelial cells showed significant enrichment of genes responsive
to UV radiation that was absent in v1.0.2 cells. Although it is beyond the scope of individual
labs to resolve genome assembly or gene annotation inconsistencies, single-cell researchers
should be aware of how the assembly and annotation of their genome might be impacting
their data interpretation and capture of specific cell types and genes of interest. Therefore,
we recommend that researchers working with multiple incomplete reference genomes
align their scRNAseq data to all constructed genome assemblies to ensure that no cells or
genes are unnecessarily excluded from the final dataset. We propose that researchers use
our methodology until a high-quality reference genome is available for their non-model
organism of choice.
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Finally, our applicable integration methodology not only provides a unifying approach
to the problems posed by multiple-genome assemblies, but it also ensures that the maxi-
mum amount of information can be extracted from a single-cell sample. Integrating the
v1.0.2 and v2.0 datasets allowed the expression of all assembly-specific genes to be explored
during analysis of the final dataset. This led to the inclusion of more than 9k assembly-
specific genes that could be used during cluster annotation, thereby ensuring that cell types
can be attributed as accurately as possible. Additionally, the integrated dataset includes
241 cells that would have been lost if the A. mexicanus genome assemblies were used in
isolation. This approach would therefore be very beneficial to researchers trying to detect
rare cell types, as maximising the number of cells that are retained for analysis decreases
the chance that any important small cell populations are lost from the final dataset.

We do suggest that our integrated approach should mainly be used for cell-type
annotation and marker-gene identification. Once the integrated dataset has been created
and cell types have been accurately identified, researchers should subset the integrated
dataset into its component genome-assembly datasets to perform downstream analysis.
Additionally, we used a 3′ UTR extension algorithm to create a custom 3′ UTR extended gtf
file for read counting, to try to offset the incomplete 3′ UTR annotation of the A. mexicanus
genome assemblies. This maximised our ability to capture transcripts and identify possible
leads from our available data. However, genes of interest identified using our 3′ UTR
extension algorithm should be treated with caution, and would require confirmation of
gene expression levels using additional methods such as qPCR and in situ hybridization.

In conclusion, we propose a novel solution to address the vexing problems posed by
multiple-genome assemblies that are discordantly annotated. Our methodology opens
the door to applying scRNAseq to non-model organisms, even those with multiple, frag-
mentary genome assemblies. This could change how we approach answering biological
questions as, all too often, model organisms that are not ideally suited to dissecting a partic-
ular disease or biological process are used for pragmatic reasons, as they possess polished
and well-annotated reference genomes. We hope that our approach will help researchers to
design their scRNAseq using their organism of choice based on how well it recapitulates
the question at hand, rather than being limited by incomplete genome assemblies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11040608/s1, Figure S1: Custom 3′ UTR extension enables
transcript capture for genes with incomplete 3′ UTR annotation; Figure S2: Identification of the
A. mexicanus major cardiac cell types; Figure S3: The integrated dataset enabled more accurate
identification of doublets; Table S1: Consistent Gene Symbol Markers for the major cardiac cell types.
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